Here’s a page that derives Polar Alignment Calculations.
(update 5/2020: the original site is gone, so I found the text on Wayback and am inserting it below. This is by the original author (srobins@…) and is attributed as such.)
I believe that the R/2 term is a little overkill, so I double the eventual “Big Constant” to allow a full pixel of drift in the final answer. That way I can more easily build seeing and FWHM into the final answer.
Original text follows:
This page provides the derivation of the polar alignment error formula
TXF/M=23636.23
where T is integration time in seconds, X is polar alignment error radius in arc-minutes, F is objective focal length in mm, and M is the width of the pixel in microns.
We start with three premises:
1) a ploar alignment error of X arc-minutes results in an error trace circle with a radius of X arc-minutes in one sidereal day.
2) the angle of sky given in arc-seconds covered by one pixel is given by
R=(206265*M)/(1000*F)
3) A displacement of 1 half pixel represents the maximum desired error. Beyond this point, a star looses it’s roundness.
Given 1,2,3 above we can determine the maximum integration time T in seconds given a polar alignment error radius, a focal length, and a pixel size. The maximum time is, of course, the time it takes to traverse R/2.
Therefore:
If the error radius of X arc-minutes traces a path which is
eq0) 2*pi*X
arc minutes in length over a siderial day (approximately 24 hours for convenience), we can say:
a) 1 arc-second=1/60 arc-minute and
b) 1 day=24*3600 seconds.
Applying this to eq0 we get:
eq1) 2*60*pi*X/(24*3600) reducing to
eq2) pi*X/720
arc-seconds per second velocity due to error X.
If T represents integration time in seconds, then we can say
eq3) T*pi*X/720
represents error displacement over time T due to error X.
We know the maximum displacement we can tolerate to be R/2 from the third premise, and from this we can say:
eq4) T*pi*X/720=R/2=206265M/(2*1000F)
Reducing eq4 we get: (note: we substitute 3.1415927 for pi)
eq5) TFX/M=23636.23
with minor alteration of eq5 we get:
eq6) T=23636.23M/FX
eq7) X=23636.23M/FT
and so forth.
I derived the above equation while on vacation in Sedona Arizona, so if there are errors, I’ll just have to blame the red rocks and the spirits therein. I am, however interested in your comments. Send them to srobinso@!mindspring.com
And here’s the text of the original script:
<-- form name="calc">
<-- table>
<-- tbody>
<-- tr>
<-- td colspan="3"><-- big><-- b>Enter Polar Error Data:<-- /b><-- /big><-- /td>
<-- /tr>
<-- tr>
<-- td>1)<-- /td>
<-- td>Enter needed integration time(seconds):<-- /td>
<-- td><-- input name="T" size="12" type="text" /><-- /td>
<-- /tr>
<-- tr>
<-- td>2)<-- /td>
<-- td>Enter objective focal length(mm):<-- /td>
<-- td><-- input name="F" size="12" type="text" /><-- /td>
<-- /tr>
<-- tr>
<-- td>3)<-- /td>
<-- td>Enter pixel size(microns):<-- /td>
<-- td><-- input name="M" size="12" type="text" /><-- /td>
<-- /tr>
<-- tr>
<-- td colspan="3"><-- big><-- b><-- input type="button" value="Compute" /> <-- /b><-- /big><-- /td>
<-- /tr>
<-- tr>
<-- td>4)<-- /td>
<-- td>Error in arc-minutes:<-- /td>
<-- td><-- input name="X" size="12" type="text" /><-- /td>
<-- /tr>
<-- /tbody>
<-- /table>
<-- /form><-- script language="JavaScript">
function calculate(){
var FF=document.calc.F.value;
var TT=document.calc.T.value;
var MM=document.calc.M.value;
document.calc.X.value=23636.23*MM/(TT*FF);
}
<– /script>
MOST COMMENTED
Observatory
Observatory 2.0 – Time has come today!
General / Maintenance
First Light, a deeper look
Mount / Observatory / Telescope
Observatory 2.0 – Result!
Observatory
Observatory 2.0 – The Pier goes in
Gear / General / Maintenance
Martin Farmer Wormblock installation notes
Deep Sky / Long Exposure Photography
NGC2244, The Rosette Nebula
Deep Sky / Long Exposure Photography
Another beautiful night.